模拟电子技术是什么,它有什么作用

来源: 电脑维修教程 阅读:     发表时间:

电机驱动伺服 放大器 的输出电压有一个基频和幅度,它对应于电机的速度、转矩和电机的极数。PWM 放大器本身也会产生较高频率的电压成份,主要对应于

电机驱动伺服放大器的输出电压有一个基频和幅度,它对应于电机的速度、转矩和电机的极数。PWM 放大器本身也会产生较高频率的电压成份,主要对应于 PWM 的上升与下降时间和重复速率。PWM 输出的快速边沿会将噪声电流电容耦合到周围的导体上,除非系统设计师采取措施来减少或消除耦合路径。

因此,设计师在噪声敏感应用中使用 PWM 放大器时要特别小心。噪声敏感应用包括那些采用高分辨率编码器、超声换能器,或其它低电平、中频信号发生器。接地、屏蔽和其它电路设计技巧可以缓解大部分噪声问题。而对噪声最敏感的应用可能需要进一步的降噪方法,如 PWM边沿滤波器。简单的设计指导可以确保对电容性耦合电流的有效管理,帮助你获得 PWM 伺服放大器的全部好处。

PWM 方案

PWM 用一种数字兼容的双电平脉冲串对模拟信号作编码。PWM 有各类变型,但伺服放大器最常用的是恒定载波频率型。用于伺服放大器的典型 PWM 载波频率为 10 kHz ~ 20 kHz。用脉冲宽度的变化对PWM脉冲串中的模拟信号信息进行编码。对于固定频率的 PWM,设计师有时会用占空比来描述脉冲宽度:即脉冲宽度与 PWM 周期之比。

在频率域中,PWM 驱动电压有两个主要频率成份。首先是基本的电机驱动成分,它对应于电机的速度和电机极数。这个基本成份引起了转矩产生的电机电流。第二个频率成份是 PWM 载频。由于这个电压与基本电机驱动频率没有关联,电机驱动电压的 PWM 成份所产生的任何电流都不会对电机运行有任何作用。在这个频率下的任何电流都只会造成电机的功率损耗。所幸的是,PWM 频率通常高得足以使在PWM 频率下的电机感抗很大。由于电流等于电压除以阻抗,因此在PWM 频率下的电流一般都较小。

使用 PWM 电机驱动的主要原因是要减小尺寸,提高效率。IGBT(绝缘栅双极晶体管)或功率 MOSFET 可将直流输入电压转换为电机驱动电压,当它们工作在开关方式时效率最高。PWM 信号在全开或全关这两个状态间快速转换时驱动 IGBT 或 MOSFET。在线性放大器中,这些器件都工作在其线性区内,因此,驱动放大器的功率损耗和整体尺寸都比较大。

电容性耦合

晶体管在通和断状态间切换时,会通过它们的线性区,消耗能量。晶体管切换得越快,消耗的能量就越少,放大器的效率就越高。如果高效率是放大器设计的唯一要求,则设计目标就是尽量加快晶体管的切换速度。但是,通常会存在一个折衷。快速切换过程造成的高 dv/dt 会将噪声耦合到邻近电路中。通常,切换越快噪声越高。因此,放大器设计师必须在效率与噪声水平之间达到一种平衡。

以上是:解决模拟电子技术是什么,它有什么作用问题的详细资料教程